Extensions 1→N→G→Q→1 with N=C3 and Q=C32×SD16

Direct product G=N×Q with N=C3 and Q=C32×SD16
dρLabelID
SD16×C33216SD16xC3^3432,518

Semidirect products G=N:Q with N=C3 and Q=C32×SD16
extensionφ:Q→Aut NdρLabelID
C31(C32×SD16) = C32×C24⋊C2φ: C32×SD16/C3×C24C2 ⊆ Aut C3144C3:1(C3^2xSD16)432,466
C32(C32×SD16) = C32×D4.S3φ: C32×SD16/D4×C32C2 ⊆ Aut C372C3:2(C3^2xSD16)432,476
C33(C32×SD16) = C32×Q82S3φ: C32×SD16/Q8×C32C2 ⊆ Aut C3144C3:3(C3^2xSD16)432,477

Non-split extensions G=N.Q with N=C3 and Q=C32×SD16
extensionφ:Q→Aut NdρLabelID
C3.1(C32×SD16) = SD16×C3×C9central extension (φ=1)216C3.1(C3^2xSD16)432,218
C3.2(C32×SD16) = SD16×He3central stem extension (φ=1)726C3.2(C3^2xSD16)432,219
C3.3(C32×SD16) = SD16×3- 1+2central stem extension (φ=1)726C3.3(C3^2xSD16)432,220

׿
×
𝔽